
cbe

Joel Greenyer, Malte Lochau, and Thomas Vogel (Hrsg.): Explainable Software for Cyber-Physical
Systems (ES4CPS), GI-Dagstuhl Seminar 19023, January 2019,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 11

Refining incomplete models through system observations
with NuSMV

Mathias Blumreiter1

1 Motivation

Formal models have proven to be a suitable tool to tackle complexity. Hence, they are used in
all engineering phases, for operation, and for documentation. However, often, the observed
system behaviour does not follow the modelled behaviour. Reasons for such discrepancies
may lie in inconsistencies between high and low-level models, inconsistencies between
timed and discrete models, misunderstood or vague (under-specified) requirements, or
just the further development of the system while the models are not kept up-to-date. For
that reason, models tend to be incomplete. Cyber-physical systems (CPS), in particular,
are no exception to model incompleteness, as the complexity of their tasks provides the
complexity of themselves and therewith their models. Unlikely corner-cases may be easily
missed in the specification and refinement phases. Since an observation of a system’s
behaviour is a temporal evolution of the system’s state change, temporal models may be
used to capture all possible evolutions over time. The benefit of using temporal models
lies in their ability to describe how the system possibly arrived in a given state as well as
the ability to predict what the system may do from that point on. Hence, depending on
the abstraction level (in particular w.r.t. time), different kinds of system behaviours can
be assessed (e.g., safety properties, probabilistic evaluations, etc.). As the model may be
incomplete, it may happen that an observation has no direct counterpart in the existing
model. In such a case, the existing models are not useful any more, neither for explanation
nor prediction. For that reason, we tackle the problem of automatically refining incomplete
models. New observations are incrementally integrated into the model as new facts without
falsifying proven knowledge (i.e., without removing former observations and originally
modelled behaviour). However, the objectives of explanation and prediction are in direct
conflict while integrating a new observation. In case of explanation, the observation has to
be integrated such that it has the best match with known behaviours to give an idea how
the observation came to be. Since such an approach introduces alternative evolutions for
the matched states, the integration may also create artefacts in the model and, therewith,
1 Hamburg University of Technology, Institute for Software Systems, Am Schwarzenberg-Campus 3 (E), 21073

Hamburg, Germany, mathias.blumreiter@tuhh.de

https://creativecommons.org/licenses/by-nc/3.0/
mathias.blumreiter@tuhh.de


12 Mathias Blumreiter

increase the model’s imprecision. On the other hand, since the aim is to use the resulting
model for prediction, the finite observation has to be integrated such that the extended
model continues reasonably with known (and possibly changed) behaviour after the added
observation has been evaluated. Hence, prediction requires a precise model.

2 Refining incomplete models with NuSMV

As a first step to refining incomplete models of cyber-physical systems, we concentrate on the
extension of discrete models and discuss a realisation in the model checker NuSMV. For that,
we assume that there is a model M given that comprises the system’s behaviour known from
the specification phases as well as the observations that were integrated in previous integration
iterations. Furthermore, we assume a set of properties Φ expressed in Computation Tree
Logic (CTL) or Linear-Time Logic (LTL) that capture, for example, fundamental system
behaviour or safety requirements. Since the system’s observed behaviour may only be
present in form of a partial observation, we assume a finite sequence of propositions τ that
hold in the respective observed system states. An outline of the integration procedure is
given in algorithm 1. We start with computing the meta-modelM of all matchings between
M and τ. The meta-model is constructed such that it contains all traces of M as well as the
traces that result from the possible integrations of τ. Since not all of these new traces satisfy
the given properties Φ, we compute an overapproximation of Φ to reduceM to the model
of integration candidates C. Afterwards, we iteratively select the best candidate τmodification
(according to a given quality metric Q) and compute the extended model Mextended. Thereby,
we integrate τmodification such that the state space of the resulting model is changed minimally.
The reason for this minimality requirement is that we use symbolic models based on a
given set of variablesV and the integration and verification cost will increase for further
integration iterations when increasingV . Hence, we prefer to stay in a minimally changed
state space with the consequence that the integration candidate may not be directly realisable
in it. For that reason, we continue with an execution of our model repair algorithm. The aim
is to modify Mextended such that the properties Φ hold while preserving the traces from the
original model, the former observations, and the current observation. The repair algorithm
mainly works on the artefacts created by previous iterations. In case the integration candidate
is not realisable in the current state space, the repair algorithm has the option to increase the
state space in a minimal way to integrate τmodification correctly. If the integration fails even
for the increased state space, the integration procedure continues with the next candidate.

3 Open questions

We described a refinement procedure for incomplete finite time-discrete models. However,
depending on the use case, such models may not be ideal to capture the relevant behavioural
characteristics of a particular cyber-physical system. Hence, useful abstraction levels for
temporal models and corresponding logics need further investigation.



Refining incomplete models through system observations with NuSMV 13

Algorithm 1 integrate(M, Φ, τ, Q)
Require: finite set of variablesV , finite model M overV , set of CTL or LTL properties Φ overV ,

(finite) sequence of satisfiable propositions τ = α1 → · · · → αm overV , and a quality metric Q
1: M ← matchings(M, τ)
2: C ←M∩ approximate∀φ∈Φ(φ)
3: for all τmodification ← select_best_candidateQ(C) do
4: Mextended ← integrate(M, τmodification)
5: (success, M’)← repair(Mextended, Φ) constrained by M and τmodification
6: return (>, M’) on success
7: end for
8: return (⊥, M)

Ensure: success⇒M’ � τ ∧ Φ, traces(M) ⊆ traces(M’), ¬ success⇒M =M’


	Motivation
	Refining incomplete models with NuSMV
	Future work

