
cbe

Joel Greenyer, Malte Lochau, and Thomas Vogel (Hrsg.): Explainable Software for Cyber-Physical
Systems (ES4CPS), GI-Dagstuhl Seminar 19023, January 2019,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 11

Explainability First!
Cousteauing the Depths of Neural Networks to Argue Safety

Markus Borg1

“Safety first!” is a weary expression that has been repeated until tedium. But any organization
trying to obtain a safety certification for a software-intensive system knows that safety is
achieved first after considerable effort. Hard evidence is required for safety engineers to
develop a safety case, i.e., a structured argumentation for why a system is adequately safe
in a specific context. Thus, in the case of Machine Learning (ML)-based Cyber-Physical
Systems (CPS), a better expression would be “Explainability first!” — at least in the eyes of
external safety assessors.

ML-based systems will be increasingly used in safety-critical applications, e.g., in Automated
Driving (AD). Increasing the level of automation has great potential to improve safety by
mitigating risks introduced by humans. Human factors such as tiredness, distractions caused
by smart phone usage, vivid conversations, and loud music do not affect automated vehicles.
In Sweden, the most alarming studies estimate that the number of cars driven by influenced
drivers matches the number of taxis in operation2. While there are obvious advantages with
AD, how could you tackle the challenge of developing the required safety argumentation?

#problem We are currently studying Deep Neural Networks (DNN) trained to enable
vehicle environmental perception, i.e., awareness of elements in the surrounding traffic,
and how to approach the corresponding safety certification. Successful perception is a
prerequisite for AD features such as lane departure detection, path/trajectory planning,
vehicle tracking, and scene understanding. A wide range of sensors have been used to
collect input data from the environment, but the most common approach is to rely on
front-facing cameras. #deeplearning #automotive #vision #safetycertification

DNNs have been reported to deliver superhuman classification accuracy for specific tasks, but
inevitably they will occasionally fail to generalize. Unfortunately, from a safety perspective,
analyzing when this might happen is currently not possible due to the black-box nature
of DNNs [Bo]. A state-of-the-art DNN might be composed of hundreds of millions of
parameter weights, thus the approaches to verification and validation of DNN components
must be different compared to approaches for human-readable source code. Techniques
1 RISE Research Institutes of Sweden AB, Software and Systems Engineering Lab, Scheelevägen 17, SE-223 70

Lund, Sweden markus.borg@ri.se
2 https://www.dt.se/artikel/dalarna/15-000-resor-per-dygn-med-alkoholpaverkade-forare

https://creativecommons.org/licenses/by-nc/3.0/
markus.borg@ri.se


12 Markus Borg

enforced by the current safety standard for automotive systems, ISO 26262, are not directly
applicable to DNNs, e.g., source code reviews and exhaustive coverage testing.

#expertise Apart from machine learning, we have experience in software engineering
and safety-critical development. Functional safety is defined in ISO 26262 as “absence of
unreasonable risk due to hazards caused by malfunctioning behavior of electrical/electronic
systems”. The fundamental assumptions are that zero risk can never be reached, but
non-tolerable risks must be reduced “as low as reasonably practicable”. The basic approach
to achieve this is by developing an understanding of situations that lead to safety-related
failures and, subsequently, designing the software so that such failures do not occur. Even
if the system does not conform to its specification, it should not hurt anyone or anything.
#machinelearning #requirements #testing #traceability

Hazards, i.e., system states that might lead to an accident, play a key role in safety-critical
development. In the automotive domain, hazards are typically analyzed in four steps of early
requirements engineering: 1) Hazard identification to populate a hazard register, 2) Hazard
assessment of probability, acceptability, and controllability, 3) Hazard analysis to identify
root causes, and 4) Risk reduction by specifying safety requirements that should ensure
that the system remains safe even when things go wrong. Complete traceability from safety
requirements to their software (or hardware) implementation and their corresponding test
cases constitute the backbone evidence of the safety case, i.e., the documented argumentation
that a system is safe, provided to external safety assessors. But what happens when a trace
link from a safety requirement ends in a DNN? [BED17]

#need We need help to develop safety cases that encompass ML, i.e., complex models that
are trained on massive annotated datasets. Analogous to how the French oceanographer
Jacques Cousteau pioneered charting the depths of the great oceans, the software engineer-
ing community needs to dive into the state-of-the-art DNNs to explain their intricacies.
We must understand how deeply we should trace from critical requirements to explain
and argue safety of an ML-based system. Should we trace to source code calling an ML
library? The underlying ML model? The model architecture? Its parameter weights? Or
even to specific examples in the training data? We might need traceability to several of the
listed examples, since safety evidence tends to aim at exhaustiveness. Surely, before any
safety certification of ML-based systems can be obtained, we first need to find ways to
explain why they are safe. #safetycase #certification #standards #evidence

References
[BED17] Borg, M.; Englund, C.; Duran, B.: Traceability and Deep Learning - Safety-critical Systems

with Traces Ending in Deep Neural Networks. In: Proc. of the Grand Challenges of
Traceability: The Next Ten Years. pp. 48–49, 2017.

[Bo] Borg, M. et al.: Safely Entering the Deep: A Review of Verification and Validation for
Machine Learning and a Challenge Elicitation in the Automotive Industry. Journal of
Automotive Software Engineering, Under revision.


