Joel Greenyer, Malte Lochau, and Thomas Vogel (Hrsg.): Explainable Software for Cyber-Physical
Systems (ES4CPS), GI-Dagstuhl Seminar 19023, January 2019,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 11

Towards Explainable Controller Synthesis and
Reinforcement Learning for Cyber-Physical Systems

Joel Greenyer!

1 Future CPS and Understanding their Behavior

In domains like transportation and automation, Cyber-Physical Systems (CPS) control more
and more complex and critical tasks. The complexity of the controlled processes, user
interactions, the distributed nature of the systems, and the uncertainty in the environments
are just some of the factors that make CPS development increasingly challenging. This
complexity must be met with more high-level development techniques that raise the
abstraction level from imperative programming or state-based modeling towards modeling
specifications or goals on a level that corresponds more closely to how humans conceive
requirements; this could be scenarios [Gr17], temporal logic specifications, or controlled
natural languages; controller synthesis and reinforcement learning techniques will then
construct or learn the executable software that exhibits the desired behavior. However, when
the system behavior is constructed algorithmically, and even changes at run-time, this creates
new challenges for comprehending the system behavior—at design-time and at run-time.

From our experience with game-based controller synthesis (CS) from scenario-based
specifications[Col5, BGS15, Gr17], we found that it can be very difficult to understand
specification inconsistencies when CS is unable to construct an implementation (valid
control strategy). It can also be that issues remain in the specification, but CS is still able to
construct an implementation (typically due to over-optimistic assumptions).

In reinforcement learning (RL), there is a similar challenge: Very often one does not know
whether the system can enter states where it will struggle or fail to reach its goals, or whether
it may choose a strategy (called policy in RL) that is only locally optimal (for example a
robot that always cleans some dirt in the kitchen instead of cleaning the whole apartment).

!'Leibniz Universitit Hannover, Software Engineering Group, Welfengarten 1, 30167 Hannover, Germany
greenyer @inf.uni-hannover.de

©®O®


https://creativecommons.org/licenses/by-nc/3.0/
greenyer@inf.uni-hannover.de

12 Joel Greenyer

2 Explainability at Design-Time and Run-Time

We ultimately desire systems that are able to explain their behavior, misbehavior, struggles, or
other aspects of interest—at design-time and run-time. But how could such (self-)explanation
capabilities look like? First of all, the question is what kinds of questions human stakeholders
need answers to? From our experience, some examples are “Can you (the system) reach
a certain state from another / the current state?”” (Reachability), “What action(s) will you
perform under certain conditions?”, “Which goals/requirements cause you to choose these
actions in a certain state?”, “What is your goal in a certain state?”, “Under what conditions
do you perform certain actions?”, “When are you struggling to achieve a goal?”, or “How
can the environment/user help the system to achieve a certain goal?”

Such questions must be expressible in a structured query language, and we require an engine
that computes answers to these queries. On what basis should the responses be computed?
They should be computed, first of all, based on a synthesized or learned strategy, but also
based on the specification or goal models, or other associated design artifacts. At run-time,
also a log of past behavior can be considered. The answers must be as concise as possible.
For example, queries that result in sets of states should summarize the defining features
of the states in the set. Questions that result in (sets of) traces, cycles, or (sub-)strategies
should also summarize their defining features, highlight relevant events, commonalities, or
key decision points. Eventually, human-friendly front-ends are required that allow users to
refine queries, or interactively simulate certain behaviors of the system.

3 Research Directions

Achieving the above requires research in multiple directions: (1) on algorithms for finding
and filtering certain aspects from traces or (counter-)strategies. Some work already exist in
this direction, e.g., [KMR17]; (2) on techniques for rendering such behavioral aspects as
higher-level models, possibly scenarios; (3) on program/specification repair [SGH17].

Extending these ideas in the direction of RL is interesting. Usually learned policies
in RL are represented as state-action matrices, or various abstraction techniques are
employed, including neural-networks that classify states. One question is whether higher-
level, explanation models can be learned, or initial design models be refined, in the learning
process, so that answers to queries as described above can be computed. Where states are
classified using neural networks, techniques would be necessary to extract their defining
features in a comprehensible form. Reinforcement learning is successfully applied where no
comprehensive model of the system’s behavior or environment exist (model-free learning),
but there exist approaches that combine model-free learning and model-based learning
or planning (e.g. the dyna principle, [Su91]) for increased efficiency—we could similarly
combine model-free learning with the learning of explanation models, which could then
serve to answer queries as above at run-time.



Towards Explainable Controller Synthesis and Reinforcement Learning for CPS 13

References

[BGS15]

[Col5]

[Gr17]

[KMR17]

[SGH17]

[Su91]

Brenner, Christian; Greenyer, Joel; Schifer, Wilhelm: On-the-fly Synthesis of Scarcely
Synchronizing Distributed Controllers from Scenario-Based Specifications. In (Egyed,
Alexander; Schaefer, Ina, eds): Fundamental Approaches to Software Engineering (FASE
2015), volume 9033 of Lecture Notes in Computer Science, pp. 51-65. Springer Berlin
Heidelberg, 2015.

Cordy, Maxime; Davril, Jean-Marc; Greenyer, Joel; Gressi, Erika; Heymans, Patrick:
All-at-once-synthesis of Controllers from Scenario-based Product Line Specifications. In:
Proceedings of the 19th International Conference on Software Product Line. SPLC ’15,
ACM, New York, NY, USA, pp. 26-35, 2015.

Greenyer, Joel; Gritzner, Daniel; Gutjahr, Timo; Konig, Florian; Glade, Nils; Marron,
Assaf; Katz, Guy: ScenarioTools — A tool suite for the scenario-based modeling and
analysis of reactive systems. Science of Computer Programming, 149(Supplement C):15 —
27, 2017. Special Issue on MODELS’16.

Kuvent, Aviv; Maoz, Shahar; Ringert, Jan Oliver: A Symbolic Justice Violations Transition
System for Unrealizable GR(1) Specifications. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE 2017, ACM, New York,
NY, USA, pp. 362-372, 2017.

Schmelter, D.; Greenyer, J.; Holtmann, J.: Toward Learning Realizable Scenario-Based,
Formal Requirements Specifications. In: 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW), 4th International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE). pp. 372-378, Sept 2017.

Sutton, Richard S.: Dyna, an Integrated Architecture for Learning, Planning, and Reacting.
SIGART Bull,, 2(4):160-163, July 1991.



	Future CPS and Understanding their Behavior
	Explainability at Design-Time and Run-Time
	Research Directions

