Joel Greenyer, Malte Lochau, and Thomas Vogel (Hrsg.): Explainable Software for Cyber-Physical

Systems (ES4CPS), GI-Dagstuhl Seminar 19023, January 2019,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 1

Explainable Quality Assurance of Behavioral Requirements

Thomas Vogel!

1 Context: Safe.Spec

Imprecise, incorrect, and inconsistent specifications of requirements often cause faults in
the software and result in increasing costs for developing and maintaining the software. In
the Safe.Spec? project, we develop an integrated tool for the quality assurance of behavioral
requirements, that particularly:

1.

supports requirements engineers and domain experts in formally modeling behavioral
requirements as scenarios expressed by UML sequence diagrams. For this purpose,
we provide a catalog of behavior and interaction patterns (e.g., send and reply). A
requirements engineer or domain expert instantiate and compose such patterns to
create a scenario.

automatically composes the modeled scenarios to an overall specification of the
requirements that allows us to analyze the interplay between individual requirements.
The overall specification is expressed by a network of timed automata for the UPPAALS3
tool. To achieve the composition, we extend an existing algorithm [UKMO3] by
adapting it to the technical domains of UML and UPPAAL.

supports requirements engineers and domain experts in formalizing properties to
be verified on the overall specification of the behavioral requirements. Due to the
difficulty and error-proneness of specifying properties in a temporal logic, we use the
property specification patterns collected and proposed by Autili et al. [Aul5] that
allows us to define properties in natural language using a structured English grammar.
verifies the defined properties against the overall specification of the requirements
using UPPAAL. For this purpose, the Safe.Spec tool automatically translates the
properties defined in natural language to Timed Computational Tree Logic (TCTL) and
observer automata that serve together with the overall requirements specification as an
input to UPPAAL. The translation connects the property specification patterns [Aul5]
to UPPAAL taking UPPAAL’s limited support of TCTL into account.

Users of the Safe.Spec tool iterate over these four steps to specify and verify behavioral
requirements. We anticipate that most faults in the specification will be avoided by formally
modeling the requirements, in contrast to describing the requirements in natural language,

! Humboldt-Universitit zu Berlin, Software Engineering, Unter den Linden 6, 10099 Berlin, Germany
(thomas.vogel at informatik.hu-berlin.de)

2 Safe.Spec is sponsored by the German Federal Ministry of Education and Research under Grant No. 011S16027.

3 http://www.uppaal.org/

©®O®


https://creativecommons.org/licenses/by-nc/3.0/
http://www.uppaal.org/

2 Thomas Vogel

while subtle faults will be detected by the verification. Thus, Safe.Spec contributes to the
quality assurance of requirements and to the formalization of high-quality requirements.

Focus of the Safe.Spec project are automotive systems that become more and more
autonomous and open, and therefore require a high quality, for instance, with respect to
safety, starting from the beginning of the development process with the requirements.

2 Explainability in Safe.Spec

In the Safe.Spec project, we encounter at least three explainability problems:

1. The scenarios/requirements modeled with UML sequence diagrams should be textually
described and explained. On the one hand, a textual description of the requirements
might be needed due to legal reasons. On the other hand, it supports domain experts
and novice users with little experience of modeling with UML in creating and
understanding the scenarios. In the Safe.Spec project, we aim for automatically
generating a textual description for each scenario that is derived from the behavior
and interaction patterns used for composing the scenario.

2. The verification properties expressed in TCTL and observer automata should be
described and explained textually. For this purpose, the structured English grammar
for creating the properties is used to generate a description of each property in natural
language.

3. The results from the verification performed on a network of timed automata (NTA)
should be lifted and explained at the abstraction level of the scenarios (UML sequence
diagrams). This is critical since users specify and change the requirements by means
of scenarios while the NTA is automatically obtained by composing the scenarios.
Thus, users interact with the scenarios and not directly with the NTA. Consequently,
a counter example obtained for the NTA should be traced back to the UML sequence
diagrams so that users can understand and relate it to the scenarios. This would
provide actionable hints on how to change the scenarios to take the verification results
into account. In this context, a research question is the selection of a suitable counter
example. While UPPAAL provides either a shortest, fastest, or some counter example,
a notion of explainable counter examples is missing.

To address these explainability problems, at least knowledge about model transformation,

traceability, formal methods, and model checking is needed. To obtain reasonable and usable

explanations, including domain knowledge seems to be a promising direction.

References

[Aul5] Autili, Marco; Grunske, Lars; Lumpe, Markus; Pelliccione, Patrizio; Tang, Antony:
Aligning Qualitative, Real-Time, and Probabilistic Property Specification Patterns Using a
Structured English Grammar. IEEE Trans. Softw. Eng., 41(7):620-638, 2015.

[UKMO3] Uchitel, Sebastian; Kramer, Jeff; Magee, Jeftf: Synthesis of Behavioral Models from
Scenarios. IEEE Trans. Softw. Eng., 29(2):99-115, 2003.



	Context: Safe.Spec
	Explainability in Safe.Spec

