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Who is Markus Borg?

Development engineer, ABB, Malmo, Sweden 2007-2010

= Editor and compiler development

= Safety-critical systems

PhD student, Lund University, Sweden 2010-2015
= Machine learning for software engineering

= Bug reports and traceability
Senior researcher, RISE AB, Lund, Sweden 2015-

= Software engineering for machine learning

= Software testing and V&V RI
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LET'S PUT

OUR HEADS
TOGETHER.
TO KEEP

AHEAD.




Functional Safety Standards

SS-EN-IEC 61508

2001 & 2010

— |

EN 50126
EN 50129
EN 50128

Railroad
1995/2001/2011

IEC61513

Nuclear Power
2001

IEC 61511

Process Industry
2003

\

IEC 62061

Safety of Machinery
2003

1SO026262

Automotive
2012




OEM

Verification &
Validation

Specification

Implementatio
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Achieving Safety In Software Systems

1. Develop understanding of situations that lead to safety-
related failures

* Hazard = system state that could lead to an accident

2. Design software so that such failures do not occur
= Fault tree analysis




Safety certification => Put evidence on the table!

= Safety requirement: “Stop for crossing pedestrians”

= How do you argue in the safety case?




Safety evidence — In a nutshell

= System specifications
= and why we believe it is valid

= Comprehensive V&YV process descriptions
= and its results
= coverage testing for all critical code

= Software process descriptions
= hazard register and safety requirements
= code reviews
= traceability from safety requirements to code and tests
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LET'S PUT
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Safe Req A1:
> In autonomous highway mode A, the
4: ¢ / vehicle shall keep a minimum safe
distance of 50 m to preceding traffic
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Autonomous Driving thanks to Convolutional Neural Networks

Feature maps
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Trace from Safe-Reqg-A1 to... what?

"Aller voir!”




Trace from Safe-Reqg-A1 to... what? 3) in training examples

used to train and test the
deep learning model

1) inside a human-
interpretable model of a
deep neural network

2) parameter values in a
trained deep learning model
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System feature - Autonomous highway driving

R1: ... shall have an autonomous mode ... in normal conditions...

R2: If the conditions change ... shall request manual mode ...

R3: If the driver does not comply ... perform graceful degradation
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Safety cage architecture

= Add reject option for deep network
= Novelty detection

= Graceful degradation
= turn on hazard lights
= slow down
= attempt to pull over
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Fault tree analysis s

Missed to detect
preceding vehicle

| False negative
|

] ] ]
"Normal”
Software bugs Data bugs misclassification o
an
| | Cong 2 ed
[ | [ | | /l‘/o,7
) A ) ) ) D S
Bugs in ML Bugs in training Bugs in inference InGeIfiEsty Missing types of Failed Misclassification
Tali labeled training . A
pipeline code code A training data generalization due to fog

Safety cage fails
to reject input

Hydrometer
failure
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Explainability additions

=

= System specifications )

= CNN architecture, safety cage architecture \

= description of training data <t —————
Safe

= V&YV process descriptions / Req-AT
o training-validation—tis_ti?“_tl/ .
" neuron coverage /
= approach to simulation

= Software process extensions
= new ML hazards advarsarial example mitigation strategy

= traceability from all safety requirements to data and code and tests
= staff ML training
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