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We need more research towards 
explainable and actionable 

RE tools. 

Message of this talk
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The Requirements Engineer

The Machine

Why? Consequences?



Working Definition
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Explainable: The tool provides hints or indication 
on the rationale why the tool made a decision.

Actionable: The tool provides hints or indication 
on how the user can influence the decision by 
changing the processed data.



Example: Automated Trace Link Recovery
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Req 1 Req 2

Req 1 Req 2 Req 3

High-level

Low-level

J. Hayes, A. Dekhtyar, and J. Osborne: “Improving requirements tracing via information retrieval,” RE’03

The Machine

Precision: 40%
Recall: 85% 

…

…



Example: Automated Trace Link Recovery
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Req 1 Req 1

Req 3

Req 5

High-level Low-level

Req 2

Req 4

Req 6
Req 7

Req 9

Req 11

Req 8

Req 10

RE: Why is Req 2 related?
Tool: …
 Not explainable

RE: Why is Req 11 not in the list? 
What can I do to change that?
Tool: …
 Not actionable



The component conditionally drives an external fan. 
This fan is required for active ventilation of the 
headlight.

The duration until the switch is recognized as hanging 
must be a configurable parameter.

Towards Explainable RE Tools
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requirement
information

Spec

…

Trained NN

Winkler, Vogelsang: “What does my Classifier Learn? A Visual Approach to Understanding Natural Language 
Text Classifiers”, NLDB’17

Winkler, Vogelsang: “Automatic Classification of Requirements Based on Convolutional Neural Networks”. (AIRE’16)



Tracing Decisions in Neural Networks

Convolutional Neural Network
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Matrix operations

Inverse matrix operations



Tracing Decisions in Neural Networks

Document Influence Matrix
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Word Requirement Information

The -0.5 0.7

duration 1.1 -0.5

… … …

must 4.7 -3.5

be 3.8 0.5

… … …

The duration until the switch is recognized as hanging 
must be a configurable parameter.

Requirement: 0.85
Information: 0.23



Tracing Decisions in Neural Networks
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Beyond Explaining: Insights through Tools

Using deep recurrent neural networks to learn and generate jokes
(based on 11,000 unchanged jokes from the Internet)
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Q: What do you call a car that feels married? 
A: A cat that is a beer!

Bacciu et al.: “LOL: An investigation into cybernetic 
humor, or: Can machines laugh?” FUN’16



Some Experiments on RE Data

Learn and create Smart Home user stories 
(based on 3,000 crowd-sourced user stories [1])

Learn and create automotive requirements
(based on 15,000 industrial automotive requirements)
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[1] Murukannaiah, Nirav Ajmeri, and Munindar P. Singh. Toward Automating Crowd RE. RE’17

As a home occupant, I want window and keep my kids to clean 
them so that I can contrrap of preper when I have having bion

Wird das signal mit dem wert " 0 x1 " empfangen , muss die 
lehne der 0 . sitzreihe die funktionsvoraussetzung erfüllt sind .



Some Experiments on RE Data
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Activation of neurons while „reading“ 1,000 random smart home user stories



Summary and Conclusions
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More research is needed towards 
explainable and actionable RE/SE tools. 

AI in RE Explainable RE Tools
Insights through 

Tools
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