RWTHAACHEN
- A IR

Model-Driven Explalnabmty
for Multi-Disciplinary //
Cyber-Physical System
Engineering

Andreas Wortmann
Software Engineering
RWTH Aachen

http://www.se-rwth.de/
@andwor



Andreas Wortmann
Software Engineering

Z::\ZH Aachen Abo ut m e

» Since 2011 working with robotics
« knowledge-based (Golog, ...)
« imperative (ROS, SmartSoft)
« educational & industrial

= PhD’16 on extensible ADLs for CPS

= Currently work in model-driven systems
engineering

» |Language-oriented systems engineering
* Dbuild proper software languages efficiently
« tailor, reuse, integrate existing languages
 across different technological spaces

http://www.se-rwth.de/teams/mdse/
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e 1 The sad state of software explainability

= Stack traces too technical for many purposes

Run - <Stacktrace>

java.lang.Throwable: stack dump
at java.lang.Thread.dumpStack(Thread. java:490)
at com.google.samples.apps.topeka.activity.SignInActivity.onCreate(SignInActivity.java:53)
at android.app.Activity.performCreate(Activity.java:6237)
at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1107)
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2369)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2476)
at android.app.ActivityThread.-wrapll(ActivityThread.java)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1344)
at android.os.Handler.dispatchMessage(Handler.java:102)
at android.os.Looper.loop(Looper. java:148)
at android.app.ActivityThread.main(ActivityThread.java:5417) <1 internal calls>
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:726)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:616)
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» Log files too verbose, not abstract enough, not reader-specific

' Log File Detail
Line |Seq No. | Date |Source |Threa(|...| Severity |Event Id |Text

8 5/09/2011 12:09:25.... WinGate NAT 243 Info 2 Authorisation failure: NAT STATUS: firewall block: TCP src 194.28.7...
10 5/09/2011 12:09:25.... WinGate NAT 248 Info Authaorisation failure: NAT STATUS: firewall block: TCP src 194.28.7...
12 5/09/2011 12:12:40.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 222.36.7...
14 5/09/2011 12:14:55.... WinGate NAT 248 Info Authaorisation failure: NAT STATUS: firewall block: TCP src 64.62.19...
16 5/09/2011 12:19:08.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 49.238.2...
18 5/09/2011 12:19:10.... WinGate NAT 248 Info Autharisation failure: NAT STATUS: firewall block: TCP src 49.2358.2...
20 5/09/2011 12:25:54.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src §1.89.5.5...
22 5/09/2011 12:28:10.... WinGate NAT 248 Info Autharisation failure: NAT STATUS: firewall block: TCP src 115.68.2...
24 5/09/2011 12:28:13.... WinGate NAT 248 Info Authaorisation failure: NAT STATUS: firewall block: TCP src 115.68.2...
26 5/09/2011 12:35:04.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 146.145....
38 5/09/2011 13:19:09.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 124.114.... ~
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to explicate intent and purpose than pure code

"The limits of my language are the limits of my world” (Wittgenstein)

Stakeholders of CPS speak different languages
and give explanations in different languages

» so do their software modules

Understanding emergent system behavior
requires understanding all related modules

In a way that supports
* reasoning about facts (what)
« contrasting observations (why)
« Enquiring intentions (how)

Suitable modeling languages can
support CPS explainability at
run time and at design-time
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cyber-physical systems

= Modeling languages that describe explanation (parts)
» to explain behavior based on lower level facts and explanations (F&E)

= Either general (e.g., ATL) or domain-specific explanation languages’
« former better integratable, latter better accessible, demand integration

» Systems produce histories = ordered lists of F&Es in suitable languages

» F&E yield meta information (source, purpose) to reason about system
behavior (e.g., “show all crash-related info but abstract from battery”)

= Such explanation should be
» receiver-specific (propulsion expert no interest in HMI explanation parts)
* message-specific (e.g., by giving meaning stack trace segments)
« time-specific (e.g., truncate irrelevant explanation parts)

= Across models of different domains
= Throughout the complete system lifecycle

T K. Holldobler, B. Rumpe, A. Wortmann. Software Language Engineering in the Large: Towards Composing and Deriving Languages.
In: Computer Languages, Systems & Structures, 54, 2018.
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Systems engineering leverages component-based notions
Explanations as 1st level concerns in component (meta) model

Quadcopter Architecture
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» Architecture supports operating on F&E

» Metamodel supports tailoring to
domain-specific F&E
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A 2D component model to explain the behavior of a
package delivery quadcopter

» Domain-specific instantiation of the quadcopter explanation

language (e.g., language embedding’ or merging?)
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T K. Holldobler, B. Rumpe, A. Wortmann. Software Language Engineering in the Large: Towards Composing and Deriving Languages.

In: Computer Languages, Systems & Structures, 54, 2018.

2 Degueule, T., Combemale, B., Blouin, A., Barais, O., & Jézéquel, J. M. Melange: A meta-language for modular and reusable development of
DSLs. In Proceedings of the 2015 SLE. 2015.
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sotware Engneering || TH@re are many challenges in explainable software
for cyber-physical systems...

= Capturing and integrating facts & explanations of different domains

» Efficient adaptation between F&E of different components
* normal system integration activity?

=  Automatically deriving explanations

= A posteriori explainer integration into existing (legacy) systems

= Automated abstraction and history truncation of explanations

= Cooperative / partial explanations

:> ... to achieve any of these, we first need explicit explanations
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Our answers to workshop-related questions

ES4CPS problems that we are interested in

* making explanations explicit

 leveraging explicit explanations at run time
« querying explanations (facts, contrasts, ...)

= ES4CPS expertise that we can contribute
« modular software language engineering

« smart manufacturing, automotive software testing, robotics
« formal systems modeling (focus, mona, isabelle)

= External expertise that we need
« domain-specific insights into explanations
« multi-disciplinary modeling
e reasoning about explanations
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to explicate inte

Software Ianguége engineering gives us better tools
nt and purpose than pure code

"The limits of my langua

Stakeholders of CPS sp
and give explanations i

» so do their software modules

Understanding (emerge
requires understanding

In a way that supports

« reasoning about facts ("why is X?")
« contrasting observations

eak different languages
n different languages

nt) system behavior
all related modules

ge are the limits of my world”

("why X instead of Y?")

why X-instea

« Enquiring intentions

(“how would you do X?*)

Suitable modeling languages can

support CPS explainability at

run time and at design-time
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A 2D component model to explain the behavior of a
package delivery quadcopter
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A 2D component model to explain the behavior of a
package delivery quadcopter

= Quadcopter operates in the context of modules observing

energy consumption and air traffic
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= Architecture supports operating on F&E

= Metamodel supports tailoring to
domain-specific F&E

Domain-specific instantiation of the quadcopter explanation language
(e.g., language embedding’ or merging?)
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* K. Holldobler, B. Rumpe, A. Wortmann. Software Language Engineering in the Large: Towards Composing and Deriving Languages.
In: Computer Languages, Systems & Structures, 54, 2018,

2Degueule, T., Combemale, B., Blouin, A., Barais, O., & Jézéquel, J. M. Melange: A meta-language for modular and reusable development of
DSLs. In Proceedings of the 2015 SLE. 2015.
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