RWTHAACHEN
- A IR

Model-Driven Explalnabmty
for Multi-Disciplinary //
Cyber-Physical System
Engineering

Andreas Wortmann
Software Engineering
RWTH Aachen

http://www.se-rwth.de/
@andwor

Andreas Wortmann
Software Engineering

Z::\ZH Aachen Abo ut m e

» Since 2011 working with robotics
« knowledge-based (Golog, ...)
« imperative (ROS, SmartSoft)
« educational & industrial

= PhD’16 on extensible ADLs for CPS

= Currently work in model-driven systems
engineering

» |Language-oriented systems engineering
* Dbuild proper software languages efficiently
« tailor, reuse, integrate existing languages
 across different technological spaces

http://www.se-rwth.de/teams/mdse/

Andreas Wortmann
Software Engineering

e 1 The sad state of software explainability

= Stack traces too technical for many purposes

Run - <Stacktrace>

java.lang.Throwable: stack dump
at java.lang.Thread.dumpStack(Thread. java:490)
at com.google.samples.apps.topeka.activity.SignInActivity.onCreate(SignInActivity.java:53)
at android.app.Activity.performCreate(Activity.java:6237)
at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1107)
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2369)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2476)
at android.app.ActivityThread.-wrapll(ActivityThread.java)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1344)
at android.os.Handler.dispatchMessage(Handler.java:102)
at android.os.Looper.loop(Looper. java:148)
at android.app.ActivityThread.main(ActivityThread.java:5417) <1 internal calls>
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:726)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:616)

=

+

X@ee @l €9
sssssssssss=s%

» Log files too verbose, not abstract enough, not reader-specific

' Log File Detail
Line |Seq No. | Date |Source |Threa(|...| Severity |Event Id |Text

8 5/09/2011 12:09:25.... WinGate NAT 243 Info 2 Authorisation failure: NAT STATUS: firewall block: TCP src 194.28.7...
10 5/09/2011 12:09:25.... WinGate NAT 248 Info Authaorisation failure: NAT STATUS: firewall block: TCP src 194.28.7...
12 5/09/2011 12:12:40.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 222.36.7...
14 5/09/2011 12:14:55.... WinGate NAT 248 Info Authaorisation failure: NAT STATUS: firewall block: TCP src 64.62.19...
16 5/09/2011 12:19:08.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 49.238.2...
18 5/09/2011 12:19:10.... WinGate NAT 248 Info Autharisation failure: NAT STATUS: firewall block: TCP src 49.2358.2...
20 5/09/2011 12:25:54.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src §1.89.5.5...
22 5/09/2011 12:28:10.... WinGate NAT 248 Info Autharisation failure: NAT STATUS: firewall block: TCP src 115.68.2...
24 5/09/2011 12:28:13.... WinGate NAT 248 Info Authaorisation failure: NAT STATUS: firewall block: TCP src 115.68.2...
26 5/09/2011 12:35:04.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 146.145....
38 5/09/2011 13:19:09.... WinGate NAT 243 Info Authorisation failure: NAT STATUS: firewall block: TCP src 124.114.... ~

1
2
3
4
5
6
7
8
9

—_
=
L R N R N R R SR R

[
o

~ insprired by @bcombemale

Andreas Wortmann

somareEnaneering |- Software language engineering gives us better tools

RWTH Aachen
Slide 5

to explicate intent and purpose than pure code

"The limits of my language are the limits of my world” (Wittgenstein)

Stakeholders of CPS speak different languages
and give explanations in different languages

» so do their software modules

Understanding emergent system behavior
requires understanding all related modules

In a way that supports
* reasoning about facts (what)
« contrasting observations (why)
« Enquiring intentions (how)

Suitable modeling languages can
support CPS explainability at
run time and at design-time

Andreas Wortmann

somare Enaneerna || TOowards explanation languages for multi-disciplinary
cyber-physical systems

= Modeling languages that describe explanation (parts)
» to explain behavior based on lower level facts and explanations (F&E)

= Either general (e.g., ATL) or domain-specific explanation languages’
« former better integratable, latter better accessible, demand integration

» Systems produce histories = ordered lists of F&Es in suitable languages

» F&E yield meta information (source, purpose) to reason about system
behavior (e.g., “show all crash-related info but abstract from battery”)

= Such explanation should be
» receiver-specific (propulsion expert no interest in HMI explanation parts)
* message-specific (e.g., by giving meaning stack trace segments)
« time-specific (e.g., truncate irrelevant explanation parts)

= Across models of different domains
= Throughout the complete system lifecycle

T K. Holldobler, B. Rumpe, A. Wortmann. Software Language Engineering in the Large: Towards Composing and Deriving Languages.
In: Computer Languages, Systems & Structures, 54, 2018.

Andreas Wortmann

/| A 2D component model to explain the behavior of a
package delivery quadcopter

Software Engineerin
RWTH Aachen

Slide 7

Systems engineering leverages component-based notions
Explanations as 1st level concerns in component (meta) model

Quadcopter Architecture

Mission Control
\\
Obst. N
Det. Navigation
Cam Motor | | Motor | | Motor || Motor
01 02 03 04
2D Component Model
processable facts
and explanations L“)
provided O Navigation { required
services services
[5 provided facts and

explanations

Extensible metamodel for explanations
History
deliberatively Episode
starts new
episodes ?
Role < Fact » Source
o Time 5
@2 [
=)
5 [AN E
Q ; Q
- Explanation ©

» Architecture supports operating on F&E

» Metamodel supports tailoring to
domain-specific F&E

Andreas Wortmann
Software Engineering
RWTH Aachen

Slide 8

A 2D component model to explain the behavior of a
package delivery quadcopter

» Domain-specific instantiation of the quadcopter explanation

language (e.g., language embedding’ or merging?)

History

¢

Episode

< Fact >
: &
o| Time 5
g Y C y
o
o
Explanation

Y new DSL
vV
NaviFact NoRoute <
ObstDFact NoFlyZone
A
...... _
() (@)
2 7
=]
5 E
joF o
(@]
%NaviEpranation
premiseT
MCEXp|anatI0n l conclusion
MCFact Deliverylmpossible

T K. Holldobler, B. Rumpe, A. Wortmann. Software Language Engineering in the Large: Towards Composing and Deriving Languages.

In: Computer Languages, Systems & Structures, 54, 2018.

2 Degueule, T., Combemale, B., Blouin, A., Barais, O., & Jézéquel, J. M. Melange: A meta-language for modular and reusable development of
DSLs. In Proceedings of the 2015 SLE. 2015.

Andreas Wortmann

sotware Engneering || TH@re are many challenges in explainable software
for cyber-physical systems...

= Capturing and integrating facts & explanations of different domains

» Efficient adaptation between F&E of different components
* normal system integration activity?

= Automatically deriving explanations

= A posteriori explainer integration into existing (legacy) systems

= Automated abstraction and history truncation of explanations

= Cooperative / partial explanations

:> ... to achieve any of these, we first need explicit explanations

Andreas Wortmann
Software Engineering
RWTH Aachen

Our answers to workshop-related questions

ES4CPS problems that we are interested in

* making explanations explicit

 leveraging explicit explanations at run time
« querying explanations (facts, contrasts, ...)

= ES4CPS expertise that we can contribute
« modular software language engineering

« smart manufacturing, automotive software testing, robotics
« formal systems modeling (focus, mona, isabelle)

= External expertise that we need
« domain-specific insights into explanations
« multi-disciplinary modeling
e reasoning about explanations

Andreas Wortmann
Software Engineering

RWTH Aach
Slide 11

en

Thank You

RWTH Aachen
sices

Andreas Wortmann
Software Engineering

to explicate inte

Software Ianguége engineering gives us better tools
nt and purpose than pure code

"The limits of my langua

Stakeholders of CPS sp
and give explanations i

» so do their software modules

Understanding (emerge
requires understanding

In a way that supports

« reasoning about facts ("why is X?")
« contrasting observations

eak different languages
n different languages

nt) system behavior
all related modules

ge are the limits of my world”

("why X instead of Y?")

why X-instea

« Enquiring intentions

(“how would you do X?*)

Suitable modeling languages can

support CPS explainability at

run time and at design-time

|Andreas Wortmann
Software Engineering
R

siice 7

A 2D component model to explain the behavior of a
package delivery quadcopter

Software Engineerin
RWTH Aachen
Side 8

Andreas Wortmann

A 2D component model to explain the behavior of a
package delivery quadcopter

= Quadcopter operates in the context of modules observing

energy consumption and air traffic

a

’ Mission Control |
&
Motor || Motor Motor

provided
services O

2D Component Model
processable facts
and explanations

(] provided facts and
explanations

required
services

starts
new episodes

| Role H Fact H Source

Time

premise
conclusion

Explanation

= Architecture supports operating on F&E

= Metamodel supports tailoring to
domain-specific F&E

Domain-specific instantiation of the quadcopter explanation language
(e.g., language embedding’ or merging?)

nnew DSL

4‘ ObstDFact)(H NoFlyZone

premise

conclusion

premise

| premise
MCExplanation conclusion

L mcFact K} Deliveryimpossible |

* K. Holldobler, B. Rumpe, A. Wortmann. Software Language Engineering in the Large: Towards Composing and Deriving Languages.
In: Computer Languages, Systems & Structures, 54, 2018,

2Degueule, T., Combemale, B., Blouin, A., Barais, O., & Jézéquel, J. M. Melange: A meta-language for modular and reusable development of
DSLs. In Proceedings of the 2015 SLE. 2015.

i

Publications
wortmann.ac

Yy 4

Videos

wortmann.ac/videos

Twitter
@andwor

